

Syntheses and structures of fluorosulfur-nitrogen anions

E. Lork, D. Viets, U. Behrens, R. Mews *

Institute of Inorganic Chemistry, University of Bremen, Leobenerstrasse NW2, D-28359 Bremen, Germany

Keywords: Syntheses; Structures; Fluorosulfur-nitrogen anions; X-Ray structures; Bonding properties

TAS-fluoride, $(Me_2N)_3S^+$ $Me_3SiF_2^-$ (1) [1], and trifluoromethyl-DAS-fluoride, $F_3CS(NMe_2)^+$ $Me_3SiF_2^-$ (2), obtained according to:

$$F_3CSF_3 + 2Me_2N - SiMe_3 \longrightarrow$$

$$F_{3}CS(NMe_{2})_{2}^{+} Me_{3}SiF_{2}^{-} + Me_{3}SiF$$

$$(2)$$

$$+CF_{3}SF_{3}$$

$$CF_{3}S(NMe_{2})_{2}^{+} HF_{2}^{-} F_{3}CS(NMe_{2})_{2}^{+} F_{3}CSF_{4}^{-}$$

$$(3)$$

$$(4)$$

are useful fluoride donors. The HF₂⁻ salt 3 was isolated from the thermal decomposition while 4 is the ionic isomer to CF₃SF₂(NMe₂) [2].

Cleavage of the Si-N bond in $Me_3SiNS(O)F_2$ gives the $NS(O)F_2^-$ ion [3], i.e.

$$Me_3SiNS(O)F_2 + 1 \longrightarrow TAS^+ NS(O)F_2^- + 2Me_3SiF$$
(5)

Like its isoelectronic counterpart NSF₃, the anion of 5 exhibits a rather short S-N bond distance $\{d(SN)=142.0(5) \text{ pm at } -160 \text{ °C. Similar short bonds}$ are found in $Hg[NS(O)F_2]_2$ (6), $ClHgNS(O)F_2$ (7), $[-CH_2-N(CH_3)SF_2\equiv N]_2$ (8) and $(CF_3)_3CSF_2\equiv N\cdot AsF_5$ (9)}.

The trimer $[NS(O)F]_3$ exists in two isomeric forms, the *cis/trans* isomerization being catalyzed by the F^- anion [4]. On addition of F^- via 1, the intermediate involved in this isomerization may be isolated:

$$cis$$
-S₃N₃O₃F₃ + 1 \longrightarrow TAS⁺ S₃N₃O₃F₄⁻ + Me₃SiF
(10) (11)

The primary product of F^- addition to $P_3N_3F_6$, which is isoelectronic with 10, is not stable:

$$P_{3}N_{3}F_{6} + TASF \xrightarrow{-Me_{3}SiF} \{TAS^{+} P_{3}N_{3}F_{7}^{-}\} \xrightarrow{-Me_{3}SiF}$$

$$\longrightarrow (TAS^{+})_{2}P_{3}N_{3}F_{5}NPF_{2}NPF_{2}NPF_{5}^{2}$$
(12)

and might be considered as one of the first steps in the anion-catalyzed formation of polyphosphazenes from cyclic oligomers. The TAS salt of the cyclic acyclic phosphazene dianion 12 may be isolated in almost quantitative yield.

The F^- anion adds exclusively to the sulfur centres in the bifunctional systems $NC-NSF_2$ and $NC-NS(O)F_2$ with TAS^+ $NC-NSF_3^-$ and TAS^+ $NC-NSOF_3^-$ (13) being formed respectively. Similar reactions are possible with CsF slow hydrolysis of Cs⁺ $NC-NS(O)F_3^-$ giving Cs⁺ $NC-NSO_2F^-$ (14).

Attack by the F⁻ anion also occurs at the sulfur atom in NC-CF₂-NSF₂, the primary product rearranging quantitatively to the cyclic bis(imino)fluorosulfinate 15.

$$NCCF_2NSF_2 + TASF \xrightarrow{-Me_3SiF}$$

The X-ray structures of compounds 2–15 are reported and the bonding properties of the compounds discussed.

References

- [1] W.J. Middleton, US Patent 3 940 402, 1976; Org. Synth., 64 (1985) 221.
- [2] G.H. Sprenger and A.H. Cowley, J. Fluorine Chem., 7 (1976) 333.
- [3] S.J. Chen and E. Cutin, manuscript in preparation.
- [4] O. Glemser, cited in G. Wagner, Dissertation, University of Göttingen, 1976.

^{*} Corresponding author.